Ice Cloud Retrievals and Analysis with the Compact Scanning Submillimeter Imaging Radiometer and the Cloud Radar System during CRYSTAL FACE
نویسندگان
چکیده
Submillimeter-wave radiometry is a new technique for determining ice water path (IWP) and particle size in upper-tropospheric ice clouds. The first brightness temperatures images of ice clouds above 340 GHz were measured by the Compact Scanning Submillimeter Imaging Radiometer (CoSSIR) during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) campaign in July 2002. CoSSIR operated with 12 channels from receivers at 183, 220, 380, 487, and 640 GHz. CoSSIR and the nadir-viewing 94-GHz Cloud Radar System (CRS) flew on the NASA ER-2 airplane based out of Key West, Florida. A qualitative comparison of the CoSSIR brightness temperatures demonstrates that the submillimeter-wave frequencies are more sensitive to anvil ice cloud particles than are the lower frequencies. A Bayesian algorithm, with a priori microphysical information from in situ cloud probes, is used to retrieve the IWP and median mass equivalent sphere particle diameter (Dme). Microwave scattering properties of random aggregates of plates and aggregates of frozen droplets are computed with the discrete dipole approximation (DDA) and an effective medium approximation tuned to DDA results. As a test of the retrievals, the vertically integrated 94-GHz radar backscattering is also retrieved from the CoSSIR data and compared with that measured by the CRS. The integrated backscattering typically agrees within 1–2 dB for IWP from 1000 to 10 000 g m , and while the disagreement increases for smaller IWP, it is typically within the Bayesian error bars. Retrievals made with only the three 183and one 220-GHz channel are generally as good or better than those including 380 6.2 and 640 GHz, because the CoSSIR submillimeter-wave channels were much noisier than expected. An algorithm to retrieve profiles of ice water content and Dme from CRS and CoSSIR data was developed. This Bayesian algorithm also retrieves the coefficients of an IWC–radar reflectivity power-law relation and could be used to evaluate radar-only ice cloud retrieval algorithms.
منابع مشابه
Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment
Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper) examines the results from a limited cloud tomography trial with a single-radiometer air...
متن کاملRetrieval of cloud liquid water distributions from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment
Tomographic methods offer a new promise for retrieving three-dimensional distributions of cloud liquid water from path-integrated radiometric measurements by passive sensors. A mobile cloud tomography system using only a single scanning microwave radiometer has many advantages over a fixed system using multiple distinctly-located 5 radiometers, e.g., efficient and flexible data collection. Part...
متن کاملA Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODIS
The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Sat...
متن کاملEnhanced Radar Backscattering due to Oriented Ice Particles at 95GHz during StormVEx
Nonspherical atmospheric ice particles can enhance radar backscattering and attenuation above that expected from spheres of the same mass. An analysis of scanning 95-GHz radar data collected during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) shows that at a least a small amount of enhanced backscattering was present in most radar scans, with a median enhancement of...
متن کاملMCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar–Passive Microwave Cloud Property Retrieval
Collocated active and passive remote sensing measurements collected at U.S. Department of Energy Atmospheric Radiation Measurement Program sites enable simultaneous retrieval of cloud and precipitation properties and air motion. Previous studies indicate the parameters of a bimodal cloud particle size distribution can be effectively constrained using a combination of passive microwave radiomete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005